

Real Analysis Bonus Problem

Bold Problem (For Extra Credit)

1. Prove that for every $x \in \mathbb{R}$ there exists a unique $k \in \mathbb{Z}$ such that

- 1) $k \leq x$, and
- 2) if $m \in \mathbb{Z}$ and $m \leq x$ then $m \leq k$

(Such k , the greatest integer less than or equal to x , is called the **integer part** of x and is denoted by $\lfloor x \rfloor$)

2. Suppose $\alpha \in \mathbb{R}$ is an irrational number. Prove that the set $S = \{n\alpha - \lfloor n\alpha \rfloor : n \in \mathbb{N}\}$ is dense in $[0, 1]$.

1. To prove that such a k is unique, let $x \in \mathbb{R}$, $k_1, k_2 \in \mathbb{Z}$ such that $k_1 \leq x$, $k_2 \leq x$ and $\forall m \in \mathbb{Z}, m \leq x \implies m \leq k_1$ and $m \leq k_2$.

For the sake of contradiction, assume $j \neq k$. Without loss of generality, assume $k_1 < k_2$.

Consider $m = k_2$.

Then $m \leq x$ and $m \leq k_2$ but $m > k_2$ which contradicts our assumption.

\therefore If such a k exists, it is unique.

To prove such a k exists, let $x \in \mathbb{R}$, $M = \mathbb{Z} \cap (-\infty, x]$

$$\forall m \in M, m \leq x \implies x \in \mathcal{UP}(M) \implies \mathcal{UP}(M) \neq \emptyset$$

Case 1 : $0 \leq x$

Then $0 \in M$ so $M \neq \emptyset$.

Case 2 : $x < 0$

Then $0 < -x$.

By the Archimedean property of \mathbb{R} , $\exists n \in \mathbb{N}$ such that $-x < n$

$$-x < n \implies -n < x \implies -n \in M \implies M \neq \emptyset.$$

Then by the corrolary to the well-ordering of the natural numbers, $\max(M) \in M$.

Let $k = \max(M)$

Then $k \leq x$ and $\forall m \in \mathbb{Z}, m \leq x \implies m \leq k$.

$\therefore \exists! k \in \mathbb{Z}$ such that $k \leq x$ and $\forall m \in \mathbb{Z}, m \leq x \implies m \leq k$.

■

2. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $S = \{n\alpha - \lfloor n\alpha \rfloor : n \in \mathbb{N}\}$.

Claim : $\inf(S) = 0$

By the definition of $\lfloor x \rfloor$, $\forall x \in \mathbb{R}$, $\lfloor x \rfloor \leq x$ so $x - \lfloor x \rfloor \geq 0$.
 Then $\forall s \in S$, $s \geq 0$ so $0 \in \mathcal{LO}(A)$.

To show that $\forall \gamma > 0$, $\gamma \notin \mathcal{LO}(A)$, let $\gamma > 0$.

\vdots

$\therefore (*) \inf(S) = 0$

Claim : $\forall s \in S$, $N \in \mathbb{N}$, $s < \frac{1}{N} \implies \forall n \in \mathbb{N}$, $n \leq N$, $ns \in S$

Let $s \in S$ and let $N \in \mathbb{N}$ such that $s < \frac{1}{N}$

Then $s = n\alpha - \lfloor n\alpha \rfloor$ for some $n \in \mathbb{N}$.

Let $m \in \mathbb{N}$ such that $m \leq N$.

$$\begin{aligned} ms &= m(n\alpha - \lfloor n\alpha \rfloor) \implies ms = mn\alpha - m\lfloor n\alpha \rfloor \\ ms \in S &\iff mn\alpha - m\lfloor n\alpha \rfloor \in S \iff m\lfloor n\alpha \rfloor = \lfloor mn\alpha \rfloor \end{aligned}$$

$$mn\alpha = m(n\alpha - \lfloor n\alpha \rfloor + \lfloor n\alpha \rfloor) = m(s + \lfloor n\alpha \rfloor) = ms + m\lfloor n\alpha \rfloor$$

$$\begin{aligned} s < \frac{1}{N} &\implies ms < \frac{m}{N} \\ m \leq N &\implies \frac{m}{N} \leq 1 \implies ms < 1 \end{aligned}$$

$$m\lfloor n\alpha \rfloor \leq mn\alpha < 1 + m\lfloor n\alpha \rfloor \implies \lfloor mn\alpha \rfloor = m\lfloor n\alpha \rfloor \implies ms \in S$$

$\therefore (**)$ $\forall s \in S$, $N \in \mathbb{N}$, $s < \frac{1}{N} \implies \forall n \in \mathbb{N}$, $n \leq N$, $ns \in S$

Let $x, y \in [0, 1]$, $x < y$.

Then $0 < y - x < 1$.

By (*), $\exists s_0 \in S$ such that $0 < s_0 < y - x$.

$$0 < s_0 < y - x \implies x < x + s_0 < y$$

Let $N = \lfloor \frac{1}{s_0} \rfloor + 1$

Then $N > \frac{1}{s_0} \implies s_0 < \frac{1}{N}$

Then by (**), $\forall n \in \mathbb{N}$, $n \leq N$, $ns_0 \in S$.

By the Archimedean property of \mathbb{R} , $\exists n \in \mathbb{N}$ such that $x < ns_0$.

By the well-ordering of \mathbb{N} , we can choose the least such n .

Then $(n - 1)s_0 \leq x < ns_0$

$$(n - 1)s_0 \leq x < 1 \implies n - 1 < \frac{1}{s_0} \implies n < \frac{1}{s_0} + 1 \implies$$

$$n \leq \lfloor \frac{1}{s_0} \rfloor + 1 \implies n \leq N \implies ns_0 \in S$$

$$(n - 1)s_0 \leq x < ns_0 \implies (n - 1)s_0 \leq x < (n - 1)s_0 + s_0 \leq x + s_0 < y \implies x < ns_0 < y$$

$\therefore \forall x, y \in [0, 1]$, $x < y$, $\exists s \in S$ such that $x < s < y$.

