
Working Copy
Users’ guide

1. Introduction:
1.1 Cloning repositories
1.2 Accessing files
1.3 Committing changes
1.4 Staying up-to-date
1.5 Repository actions
1.6 Deleting repositories

2. Remotes:
2.1 Clone catalog
2.2 SSH keys
2.3 SSH Troubleshooting
2.4 Heroku Remotes
2.5 AWS CodeCommit
2.6 Glitch
2.7 Hosting Providers
2.8 Access Tokens

3. Viewing and editing:
3.1 Text Editing
3.2 Preview
3.3 Search and navigation
3.4 File changes

4. Committing or reverting:
4.1 Commit history
4.2 Branches
4.3 Branch Editing
4.4 Pull Requests
4.5 Commit Graph
4.6 Resolving conflicts
4.7 Signed Commits
4.8 Tagging
4.9 Stashing changes

5. Extending iOS:
5.1 Drag and Drop
5.2 Saving to Working Copy
5.3 Edit in App
5.4 External repositories
5.5 Files synchronisation
5.6 WebDAV access
5.7 Shortcuts and automation
5.8 DraftCode

6. Beyond iOS:
6.1 Log files
6.2 SSH Upload
6.3 SSH Command

7. Help and Support
7.1 File Backup
7.2 How to purchase

https://workingcopy.app/
https://workingcopy.app/manual/introduction
https://workingcopy.app/manual/cloning-repos
https://workingcopy.app/manual/accessing-files
https://workingcopy.app/manual/committing-changes
https://workingcopy.app/manual/up-to-date
https://workingcopy.app/manual/repository-sheet
https://workingcopy.app/manual/deleting-repos
https://workingcopy.app/manual/remotes
https://workingcopy.app/manual/clone-catalog
https://workingcopy.app/manual/ssh-keys
https://workingcopy.app/manual/ssh-troubleshooting
https://workingcopy.app/manual/heruko-remotes
https://workingcopy.app/manual/aws-codecommit
https://workingcopy.app/manual/glitch
https://workingcopy.app/manual/hosting-provider
https://workingcopy.app/manual/access-tokens
https://workingcopy.app/manual/viewing-editing
https://workingcopy.app/manual/edit
https://workingcopy.app/manual/preview
https://workingcopy.app/manual/search
https://workingcopy.app/manual/file-changes
https://workingcopy.app/manual/commit-revert
https://workingcopy.app/manual/commit-history
https://workingcopy.app/manual/branching
https://workingcopy.app/manual/branch-editing
https://workingcopy.app/manual/pull-requests
https://workingcopy.app/manual/commit-graph
https://workingcopy.app/manual/resolve-tool
https://workingcopy.app/manual/signed-commits
https://workingcopy.app/manual/tagging
https://workingcopy.app/manual/stashing
https://workingcopy.app/manual/extending-ios
https://workingcopy.app/manual/dragdrop
https://workingcopy.app/manual/saving
https://workingcopy.app/manual/edit-in-app
https://workingcopy.app/manual/external-repos
https://workingcopy.app/manual/files-sync
https://workingcopy.app/manual/webdav-server
https://workingcopy.app/manual/shortcuts
https://workingcopy.app/manual/draftcode
https://workingcopy.app/manual/beyond-ios
https://workingcopy.app/manual/logfiles
https://workingcopy.app/manual/ssh-upload
https://workingcopy.app/manual/ssh-command
https://workingcopy.app/manual/support
https://workingcopy.app/manual/file-backup
https://workingcopy.app/manual/purchase

1. Introduction

Working Copy is a full featured Git client for iOS and since Git is a powerful
version-control system it can take some time to master. The same is true for
Working Copy, and even though you will not need to work with the command-
line, some understanding of Git is needed. If you are not confident with Git's
core concepts you should read the first few chapters of Pro Git by Scott
Chacon or the excellent tutorials Atlassian has made available.

1.1 Cloning repositories

The first step is to get hold of a local copy of the Git
repositories you want to access. Duplicating a
repository from a remote server is known as
cloning, and you do this by pressing + on the list of
repositories.

You provide a URL pointing to a repository on the
Git remote you wish to clone from. Working Copy
can transfer data from the remote using http, https,
git or ssh protocols. However, you should be careful
using http transfer since data will be sent without
encryption, which means your login credentials and
your source code can be intercepted. If you are not
on a trusted network you should avoid using http
transfer.

There is special support for BitBucket, GitHub and
some other hosting providers to list your available
repositories such that cloning amounts to picking a
repository and tapping clone. Even when Working
Copy has no specific support for a hosting provider,
you can copy-paste your URL into the top field and
Working Copy will clone just as well.

You can also import repositories by copying directories into the Files app
Working Copy location. If the directory does not contain a .git subdirectory at
top-level, Working Copy assumes you want a new repository with all these files
added.

1.2 Accessing files

Data in Working Copy is organized as repositories, containing directories,
which themselves contain either sub-directories or files. Tapping a file shows
the file content, the changes to the file and the status of the file.

File content is shown with syntax highlighting for sourcecode and a preview of
html and document files. To edit you will need to switch away from Preview
mode with the button at the top showing your current mode. Tap the action-
button in the upper-right corner to send the file to other applications such as
Mail through a share sheet.

https://workingcopy.app/
http://git-scm.com/book/en/v2
https://www.atlassian.com/git/tutorials/
https://workingcopy.app/manual/hosting-provider

The editing inside Working Copy is bare-bones and
neutral in that neither programming languages,
markdown nor regular text files get special
treatment. If you are performing heavy editing
consider using a specialized text-editor app for
programming, markdown or other purposes. You
can read more about using Working Copy in
combination with other applications.

To copy files tap and hold to show a context menu,
pick Copy, then navigate to the destination directory
and press + in the upper right corner to insert File
from clipboard. Move files and directories by
dragging them around directory listings.

1.3 Committing changes

When you have file modifications the Changes
tab lights up. You can see what has been added
in green and what has been deleted in red. If you
are satisfied with the changes you can commit
them to the repository with a button on the
Status tab. A faster way, however, is to swipe left
on the file in the directory listing. Swiping left can
generally be performed on lists of files,
directories and repositories allowing convenient
access to frequent actions.

You can commit a single file, multiple files or the
entire repository at once, and it is considered
good practice to make a commit represent one
conceptual change to your repository. Following
this practice also makes it easier to come up
with concise yet descriptive commit messages.

Word suggestions are shown above the
keyboard when writing your commit message.
Suggestions are based on the filenames and
changes you are about to commit, as well as

previous commit messages in the same repository. This is combined with
frequently used sentences in commit messages in public repositories. No
information from your commits or repository is collected to make this happen.

The small button at the left of the commit message field shows a list of
previous messages and includes the ability to suggest messages using artifical

https://workingcopy.app/manual/extending-ios
https://support.apple.com/guide/ipad/drag-and-drop-ipadaa83b207/ios

intelligence. These AI suggestions require sending staged differences to
OpenAI and should not be used on sensitive repositories. AI suggestions are
available to users that purchased or upgraded their pro unlock after March
2022.

The list of files include everything that can be committed. You tap files to stage
or unstage for commit and the rightmost button shows the difference for this
particular file between working directory and last commit. When looking at
differences you can stage/unstage individual hunks by long-tapping and
swiping making it possible to commit some changes in a file but leave others
uncommitted.

When you have made one or more commits your on-device repository is seen
as being ahead of the remote repository and you push these commits to the
remote. Because Commit and Push are distinct actions you can Commit while
offline and Push once you get back online.

To Push after Commit tap and hold a repository and Push from the context
menu. You need to unlock the ability to Push with an in-app purchase.

1.4 Staying up-to-date

Commits can be pushed to the remote from many
sources. Other people contribute their work, or you
could be doing something on a regular computer or
another iOS device which results in commits that
end up on the remote.

You get commits back into Working Copy through a
two-step process where you Fetch and Merge. Fetch
reads commits from the server and requires a
network connection. The commits will not be
integrated with the local data on your device until
you Merge, which will combine the new commits
from the server with your local data.

You can pull the list of repositories down to Fetch for
all your repositories. If any of your repositories
received new commits you will be able to Merge all
these repositories with a single tap.

Sometimes data cannot be automatically combined
because your local changes conflict with the
changes from the commits fetched. These conflicts
can be resolved by manually editing files and
picking the wanted parts from the conflict markers and tapping the Resolve
button. A faster solution is to use the Resolve tool that lets you resolve
conflicts for many files at once.

Performing a Fetch followed by a Merge is called Pull. On the remote detail
screen you can Fetch, then Merge and finally Push with the Sync button.

You can configure repositories to Rebase instead of Merge commits from the
Configuration page inside Repository status. This is a pro configuration

https://workingcopy.app/manual/purchase
https://workingcopy.app/manual/purchase
https://workingcopy.app/manual/resolve-tool

available to users that purchased or upgraded their pro unlock on October 17,
2018 or later.

1.5 Repository actions

To make it easier to perform important actions a
floating fingerprint button is available in the lower
right corner on iPhone. This button opens a
repository status sheet with easy access to Commit,
Revert, Fetch, Pull & Push and lists modified files.

On iPads with sufficient screen space these
repository actions are available at the top of the
screen without the need to open any sheet. It gets
easier to remember what each button does when
you realise the icons are used on the status sheet
and in context menus as well.

On iPad the fingerprint button can be dragged into
a new window to show the repository status sheet
and since this displays modified files and updates
as files change, it can be very useful while using
external editors such as Textastic.

You can tap and hold this floating button to change
the location on screen.

1.6 Deleting repositories

Once you are done with a repository you can delete it from the repository
context menu or status screen. This has no influence on remote repositories.

2. Remotes

Git remotes are server-side duplicates of your repositories with full history.
These can be services such as GitHub, BitBucket etc. or they can be be
privately hosted servers.

When you clone a repository, the URL of the remote repository is your starting
point. Working Copy supports ssh, https and http remotes and the URL
consists of protocol scheme, the hostname, username and the path to the
repository on the host. The following are typical examples of remote URLs:
https://user@git.company.se/home/user/site.git
ssh://andrew@company.se/home/andrew/git/site.git/
andrew@company.se/home/andrew/git/site.git/

The last two URLs are equivalent since ssh is the default protocol.

Authentication will always try with a username included on the form username@
otherwise remembering the last username for that host. The username git has

https://workingcopy.app/manual/purchase

special meaning for many hosts such that the actual
user account is derived from the SSH key used to
authenticate.

If you enter the Repository page you can add or
delete remotes. After cloning there is only a single
“origin” remote and, in many scenarios, there is no
need for additional remotes.

2.1 Clone catalog

When cloning repositories from BitBucket and
GitHub you can enter your credentials to get a list of
repositories to clone. Working Copy tries to show
the most relevant repositories at the top, these
being the ones where you have administrative or
push privileges. Your GitHub Gists and BitBucket
Snippets are also available from this list.

If the list is long, enter keywords in the search field
in order to only see repositories containing these. If
you do not see the repository you wish to clone,
you can still copy-paste the clone URL into the top-
field manually.

Organizations on GitHub can be configured to
restrict third-party applications such that
repositories are not listed and you might need to
ask your administrator to approve Working Copy.
Use manually configured SSH keys as a work-
around while waiting for approval.

You configure additional hosting providers from
Working Copy settings or you can clone using a

URL from the clipboard.

2.2 SSH keys

SSH transfers support password authentication but also public/private key
authentication for improved security. The public part of a SSH key corresponds

https://help.github.com/articles/about-third-party-application-restrictions/
https://help.github.com/articles/requesting-organization-approval-for-your-authorized-applications/
https://workingcopy.app/manual/hosting-provider

to a padlock that you use to lock-down resources.
The private part of the SSH key corresponds to the
physical key that opens the padlock. Your private
key must be kept secret and the public key can be
distributed to servers where you want to store
remote repositories.

If you tap “Connect with BitBucket” or “Connect
with GitHub” your public key will automatically be
registered with BitBucket or GitHub. For other Git
hosting providers such as OpenShift or AWS
CodeCommit you need to enter your public key in
the settings page for that service. The details will
depend upon the service in question, but your first
step is to Export the public key. When using a Linux
server, you need to append the public key to the
$HOME/.ssh/authorized_keys file.

Working Copy generates 4096 bit RSA keys and
imports RSA, ECDSA or Ed25519 private keys in
PEM or OpenSSH format.

2.3 SSH Troubleshooting

If you are having problems authenticating with an SSH server check that the
public key installed on the server matches the private key in Working Copy. If
you have some other SSH client on your device or computer, you should make
sure you can connect from these without problems. If this works, you must
also make sure you use the same SSH key in Working Copy, possibly
importing the private key from the other application.

When exporting the public key you end up with something on the form:
ssh-rsa AAAAB3NzaC1…g+y4Pfz9 WorkingCopy@iPadPro-31092017

Everything after the second space is just a comment, that makes it easier to
determine where and how the key was created. It can sometimes help to
remove this comment, before registering the key with your Git server.

SSH keys registered on your GitHub account by Working Copy will not grant
access to repositories owned by organisations restricting 3rd party apps. They
are unrestricted when manually added to GitHub.com settings.

2.4 Heroku Remotes

It is possible to deploy to Heroku using Git. You need to setup a second
remote for your repository that points to your Heroku application. Since the
Heroku CLI is not available on iOS, you must manually configure the remote.

The easiest way to do this is to setup your remote on a regular computer and
determine the remote details on the command line by entering:
git remote -v

https://www.openshift.com/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codecommit/
https://github.com/settings/keys
http://heroku.com/
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/git#creating-a-heroku-remote

You then create a new remote from this URL in Working Copy. Note that
username and password for remote is not your Heroku account credentials.
You will find this information in your home directory in the hidden file .netrc
cat ~/.netrc

When you push to your Heroku remote the deployment status is logged and
shown inside Working Copy.

2.5 AWS CodeCommit

To use Working Copy with AWS CodeCommit you need to create an IAM user
with the IAMUserSSHKeys Policy. You also need to add some Policy allowing
repository access and AWSCodeCommitPowerUser is a good choice, unless
you only need to clone and fetch code in which case
AWSCodeCommitReadOnly is preferable.

You must also export your SSH Key from Working Copy and Upload SSH
Public Key. This is done in the Security Credentials tab of your IAM User. When
your SSH Key has been uploaded it will be listed with a SSH Key Id that will be
needed for the next step.

Your repositories are listed in the CodeCommit Dashboard. When looking at
individual repositories you can request the Clone URL in the SSH format,
which can be used inside Working Copy, but you need to use the SSH Key Id
as your username. Your URL should end up looking something like:
ssh://APKAJMDDPOLPSL7OAYOA@git-codecommit.us-east-1.amazonaws.com/v1/repos/test

2.6 Glitch

Glitch is a online service and community for creating web apps. You can edit
from a web browser but they also provide access through a Git remote.

If you use Process in Working Copy from the share sheet in Safari the equivalent
Git repository is opened in Working Copy cloning it as needed. If you are
editing on glitch.com when using Process in Working Copy the remote url
includes a username token that grants you push permissions on the remote.

When pushing changes back to glitch you need to push to another branch
than master and use their console to merge in and reload changes. You can
read about this here.

Git remotes at api.glitch.com behave slightly differently than other Git remotes
and you need to include the username and a empty password to the remote
url for pushing to work.

2.7 Hosting Providers

To make it easier to list your repositories, to create new remote repositories
and to configure your SSH keys you can configure hosting providers.

Working Copy supports private instances of BitBucket Server (previously
known as Stash), GitHub Enterprise, GitLab and Gitea.

https://workingcopy.app/manual/logfiles
https://workingcopy.app/manual/logfiles
https://aws.amazon.com/codecommit/
https://console.aws.amazon.com/iam/#users
https://console.aws.amazon.com/codecommit/
https://glitch.com/
https://support.glitch.com/t/possible-to-code-locally-and-push-to-glitch-with-git/2704/3
https://workingcopy.app/manual/clone-catalog
https://workingcopy.app/manual/ssh-keys
https://www.atlassian.com/software/bitbucket/server
https://enterprise.github.com/
https://about.gitlab.com/features/
https://gitea.io/

You enter the hostname of your server and the
instance type is identified automatically trying a
combination of schemes and ports. If your hosting
provider isn't recognised or auto-detection is taking
too long it can help to enter a full URL including
scheme and port.

You can configure cloud instances of the above
hosting providers or configure a regular Linux server,
BSD server & Synology NAS to act as a hosting
provider, using SSH commands for listing
repositories.

If you have several user accounts for a hosting
provider you can bake the user into the server field
as https://username@github.com to get a hosting
provider for each user.

When you add hosting providers it is often a good
idea to disable the built-in providers you are not
using to avoid clutter in other parts of Working
Copy. This is especially important when you
configure providers with a baked-in username as
the default providers for the same service will switch
between user accounts.

2.8 Access Tokens

If you hosting provider does not allow authenticating with a regular password
access tokens can often be used instead.

For GitHub Enterprise you visit the website and go to Settings > Developer
Settings > Personal access tokens and tap Generate new token. This token should
be granted repo, read:org, admin:public_key, gist and admin:gpg_key to support
all Working Copy features but repo is the most important one.

GitHub Enterprise Server instances are configured as new hosting providers
where GitHub Enterprise Cloud is part of the built-in GitHub hosting provider
such that you need to disable OAuth Authentication to allow access tokens
authentication.

On GitLab you go to User Settings > Access Tokens to create new tokens where
the api scope is required.

You normally use the access token instead of a password and it will be
remembered until you sign out of the service. The exception is Gitea where the
access token replaces the username and the password is kept blank.

3. Viewing and editing

A repository is presented as a hierarchy of directories and files where you tap a
directory to enter and view the contents.

https://www.youtube.com/watch?v=WMcAcUknHMw
javascript:showSecureShellInfo();

You can swipe right on entries
or press and hold to access
commonly used actions such
as Commit, Revert and invoke
the share sheet which allows
exporting single files,
directories or the entire
repository.

Open recently accessed
documents from the
bookmark button in the upper
right corner above repository
or file listings.

If you tap a file and pick the
Content tab you can view the
file in different modes. This is
controlled by the button in the
top bar indicating the current
mode. The top choices are
the recommended mode for

this file and depends on both filename and file content. When you pick a mode
for a given file, Working Copy remembers this choice for other files with the
same file extension.

3.1 Text Editing

Text files can be viewed as plain text or with syntax
highlighting for one of the supported languages.
Font size is adjusted in the popup switching
between modes and is remembered individually for
different modes.

You can pick between a number of included fonts
or import new OpenType or TrueType fonts as a pro
feature.

Looking at source code you can tap anywhere to
start editing. Done in the upper right corner stops
editing. You undo latest changes with the undo-
button above the keyboard on iPad or by shaking
your iPhone. If you want to undo all your changes,
switch to the Status tab where you can revert the
file to how it was at last commit.

Any text selection can be transformed with action
extensions, which will let you do things such as
URL encode text from within the editor. Shortcuts is
the prime example of such a application.

When your selection matches a valid CSS color you
can adjust this. Placing the caret where a color is expected the popup menu

https://workingcopy.app/manual.html?print=1
https://itunes.apple.com/app/workflow-powerful-automation/id915249334?mt=8&at=1000lHq
https://en.wikipedia.org/wiki/Web_colors

also lets you use a color picker.

Use .editorconfig files to control encoding, newline style and indentation in a
manner supported by a wide range of editors and IDEs.

3.2 Preview

You enable Preview mode with the button in the upper right corner which is
available for HTML, Javascript, Markdown, org-mode, AsciiDoc and Jupyter
notebook files.

When previewing HTML files, relative links to images, javascript and
stylesheets resolve to files inside repository and will work without Internet
connection. External assets require a Internet connection to load. If offline
preview is important to you, consider including javascript frameworks inside
repository.

You can make edits from other apps while previewing using the iOS document
picker or WebDAV access. When there are changes to the file being previewed
or any local assets it depends on, the preview will automatically reload. To
make it easy to evaluate changes, the scroll and zoom settings are restored
during reload.

Enable the Javascript Console to check for errors, warnings or log statements.
Errors that occur in javascript files inside repository can be tapped taking you
to the line in the source file. You can evaluate javascript in the context of the
HTML page and when external keyboard is attached, the ↑↓ keys let you step
through evaluation history.

You can preview from other devices or computers, by enabling External URL.
Long tap the URL to put it on the clipboard or use Handoff to connect. This
preview will keep working as you switch back to editing mode.

Putting your iPad in split screen mode you can have Safari side-by-side with
Working Copy to preview and edit simultaneously.

External preview is a pro feature available to users that purchased the unlock
or upgraded their pro unlock on January 8, 2018 or later.

3.3 Search and navigation

You can search repository files by name, text content or symbol declarations,
which is often the fastest way to navigate a large repository.

When you search from the top of directory listings, results are included from
this location in the file hierarchy including files inside sub-directories. Search
from the Content tab of a file includes results from the entire repository or the
current file depending on the scope selection.

https://editorconfig.org/
https://workingcopy.app/manual/extending-ios
https://workingcopy.app/manual/extending-ios
https://workingcopy.app/manual/webdav-server
https://workingcopy.app/manual/purchase

Search queries will be matched against filenames, symbols, line numbers and
text content. For filenames and symbols a fuzzy matching will be performed
which means that the characters in query must occur in the given order but
characters can be skipped. The query read.md will fuzzy match both
readme.md and readme.markdown but the first one will be ranked higher as it's
closer to a non-fuzzy match.

When you type several search words they all have to match either a filename,
symbol, line number or text. The query read.md 10 will be understood as

line 10 of the files where name fuzzy matches "read.md"
occurrences of the text "10" in files where name fuzzy matches "read.md"
files containing the text "read.md" and "10"

To make it easier to restrict queries, the words matching the filename must
lead your query and search results matching filenames or symbols will appear
at the top of search results with lower ranking the more fuzzyness was
required to reach a match.

All files in your repository need to be read and parsed to satisfy searching for
text content and symbols. When you search for the first time in a large
repository, indexing can take several minutes and the progress is shown in the
right part of the search field. Filename searches will be available almost
immediately while text content and symbol results will update as the repository
is indexed. Only files that have changed since the last search will be indexed
when you search a repository that has been indexed previously, requiring
much less work.

While searching a small button is shown to the left of the search field with
quick access to recent queries and settings to toggle whether results include
symbols and file content or only filenames.

Editor search uses your current selection or the word at your cursor as the
start of your search. This is convenient to lookup a symbol declaration or the
usages of a function or class. Invoking search when looking at the Content tab
of a non-text file the query will be your current filename, showing usages of
that particular file.

The prefilled query is selected such that it can be deleted with a single tap and
when the query is empty you are shown recent edit points for repository scope
and symbol declarations for the file scope, which is useful for quick back and
forth navigation. Regular expression search is supported for the file scope by
wrapping your pattern in slashes such as /[0-9]+/ to find all integers.

Typing on a external keyboard it can be efficient to not more your hands from
the keyboard to the screen. The arrow keys let you cycle through search
history, but this makes it impossible to navigate search results with these keys.
The trick is to refine your query until the result you want is the top one, and
⌘⏎ lets you pick the top result.

3.4 File changes

A badge on the
Changes tab shows
the number of lines
added or deleted
from a file. The
Changes tab itself
shows the differences
between the last
version committed
and the current
version. The two-

panel split-view in the screenshot requires the screen to be wide and for
phones to be turned to landscape mode.

Image changes can be viewed in a split-mode where zooming one image will
make the other one follow - making it easy to focus on the details. If you are
unsure as to where the changes are in an image, use the Color mode that
highlights changed areas in green where identical areas are without color. Cut
mode is useful for images with global changes and allows you to drag and
rotate a partitioning line in such a way that everything on one side is the old
image. The previous image will have a red border, and the new one a green
border.

The Status tab says whether the file is modified and allows you to commit or
revert changes.

https://en.wikipedia.org/wiki/Regular_expression

4. Committing or reverting

You can commit changes to your files for the entire
repository, for all files in a sub-directory or for a
specific file. If you do not wish to commit some of
your files you can Revert to how they where at the
last commit. The files taken into account are
determined by where in the directory structure you
initiate the commit. As a short-hand you can swipe
left on a repository, directory or file to commit.

During commit you are
shown a list of changed
files and can view
differences for individual
files by pressing the
button that shows the
number of lines added or
deleted. Files with a
checkmark will be
included in the commit
and you toggle the
checkmark by tapping
the file. Working Copy
will push the commit to
the remote right away if you enable the Push button.

As a general rule you should make commits with a
single purpose and only include the changed files
that helped achieve this purpose. You should write
a message in the top line describing this purpose; if
it is hard to write something short but concrete you
might need to break your commit into smaller parts.

4.1 Commit history

The value of well-drafted commit messages
becomes apparent when looking at a log of
previous commits. You may do this for either the
entire repository, a directory with all its files or for
single files. If your commit messages are
meaningful, even if you return to a project after
months or years you have a much better chance of
making sense of the source-code. Tap a commit to
see specific changes this commit made to the files
in question.

The images shown in commit-logs are determined
from the email-address of the person making the
commit with the help of gravatar.com. At the
commit-list for the entire repository you can
Checkout old versions of your files by swiping left
on a commit. Your repository will be in a “detached
head” state where you cannot commit any changes,
but if you make modifications and wish to keep
these, you should create a new branch.

Checking out the topmost commit will reattach the head in such a way that
your repository is back to normal.

When not yet pushed to a remote, you can Undo your latest commit by
swiping left in the commit-list. All changes for that commit are kept in your
working directory as modified files. If you commit again the last commit
message is remembered, making it very easy to commit again to fix typos in
the commit message or only commit some of the files, splitting a large commit
into smaller ones. When the last commit has been undone, you can Undo
another, letting you squash several commits into one.

4.2 Branches

A great advantage of Git compared to other version-control software is the
ease at which you can branch your repository to work independently on
different things. Once you are confident with the work undertaken in a branch,
it can be merged back into one of your main branches.

The current branch (main in the screenshot) is shown in directory listings
between the Status cell and the actual file listing. Switch to other branches
with the button to the right of the branch name tapping the bottom of the
branch picker popup for a list of all branches.

Tapping a branch from the full list brings up a detail view where you can
checkout the branch (make it current), rename or delete it.

Swipe left on branches to Checkout, Rename or Delete without having to go to
the detail screen. When a local branch is ahead of its remote, you can Push as
well.

http://gravatar.com/

You create new branches from the current one
with the upper-rightmost button. To put commits
on a branch you can either Merge or Rebase.
Atlassian has a great tutorial describing the
differences. In both situations you change your
current branch to include commits from some
other branch.

Merge will create a merge-commit as needed,
while rebase will rewrite commits from your
current branch on top of the commits from the
other branch. Working Copy will not rebase if
this requires rewriting commits that have already
been pushed to a server. You can override this
behaviour by configuring the branch for History
Rewriting, but this in turn requires you to Force
Push. This also lets you Undo commits already
pushed to a remote.

4.3 Branch Editing

You Reset the head of the current branch from
the commit you want to become HEAD. This is a soft reset that leaves the
working directory as before the reset which can be fixed with Revert as
needed. If you navigate the commit list through a non-current local branch you
are able to Reset the head of this branch. In all cases you will be told what is
about to happen as you confirm the Reset.

Each commit represents changes made to files and it
can be useful to apply these changes differently to
improve the commit history. Applying a single commit
is called cherry picking and applying the changes
from a series of commits is called rebasing.

Command line Git is able to rebase interactively to
change the order in which commits are applied,
discard commits, edit commit messages and more.
You can get equivalent results in Working Copy from
the commit list of individual branches.

Long tapping commits you can Delete Commit to
rewrite the branch without the work contributed by
this single commit, Edit Message to change a commit
message while still applying the same changes from
the commit or Squash a commit with its child.

Drag one or several consecutive commits to change
the order in which changes are applied. When
commits are rewritten in different order it might cause
conflicts that you will be asked to resolve.

Rewriting history can cause problems for others working on the same branch
and when commits are already pushed to the remote you will be asked to

https://www.atlassian.com/git/tutorials/merging-vs-rebasing/
https://workingcopy.app/manual/commit-undo
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

enable history rewriting.

Undo history rewriting by shaking your iPhone, using three-finger left swipe or
pressing ⌘Z on external keyboards.

Branch Editing is a Pro feature.

4.4 Pull Requests

Where Merge and Rebase incorporates changes
from other branches into your current branch, a
Pull Request or PR works in the opposite
direction asking others to incorporate changes
from your current branch into some base
branch. Working Copy supports creating these
for BitBucket, GitHub and GitLab.

You tap PR from the full list of branches and pick
the remote branch that should be the base of
the Pull Request. It is the base branch that
receives new commits from your current branch.

In order to open Pull Requests between different
repositories you need to have a remote
configured corresponding to the repository with
the base branch. When cloning from GitHub and
GitLab the app tries to configure a upstream
remote when the cloned repository is a fork. Do
a single Fetch after enabling the upstream
remote to include this repository in your branch
list.

Creating a Pull Request is the first step in a workflow that might involve code
review, discussions or automated verification and ends up with the pull request
being accepted or closed days or weeks later.

Manage the communication aspects of Pull Requests in your browser or with
apps such as GitHub for Mobile and handle the code in Working Copy.

Continue work on existing pull requests by invoking the share sheet on a link
and picking Process in Working Copy. Working Copy makes sure the repository
is cloned, relevant remotes are configured and the branch is checked out.

Long tap the repository to jump back to the Pull Request page on the hosting
provider website.

https://workingcopy.app/manual/purchase
https://www.atlassian.com/git/tutorials/making-a-pull-request
https://help.github.com/en/articles/about-pull-requests
https://docs.gitlab.com/ee/user/project/merge_requests/
https://apps.apple.com/app/github/id1477376905?ls=1

Pull Request creation is a Pro feature.

4.5 Commit Graph

To explore repository changes across branches use
the Commit Graph available from the Repository
screen.

Commits are presented in chronological order with
lines showing which commits are based on each
other, with tags and branch heads displayed as well
as the commit message summary, date and
information about the author of the commit.

Pinch to zoom will let you explore additional details,
such as the full commit message, the full name of
the author rather than initials, a commit identifier
and the files modified by this commit. If you connect
an external screen or projector to your device, you
will get a full-screen Commit Graph without any
interface elements obscuring the view. This makes
for a convenient tool when your team needs to
discuss the project.

Tap and hold or double-tap elements of a commit
for additional actions, where the commit message
itself takes you to a detail view.

You can copy the author email to the clipboard or start composing a email to
the author.

https://workingcopy.app/manual/purchase

It is also possible to view the commit date in your calendar to see what else
happened around this time and when Fantastical is installed, it will be used
instead of the built-in Calendar app.

4.6 Resolving conflicts

Working Copy has a built-in Resolve tool that can
be used to fix conflicts for the entire repository, a
subdirectory or single files, depending on where in
the directory hierarchy the tool is invoked. Swipe left
on cells for repository, directories or files to get
started.

Text files are shown as chunks of text, where
everything both files agree on start out in the center,
and everything from our version is to the left and
their version to the right. You swipe these chunks
towards the center to include them and away to
exclude them. This way your final file will be lined up
at the center. Chunks at the border are pending
your decision.

If you want to use all chunks from one version of a
file and discard the other version of the file entirely,
you can tap one of the branch names at the header
of the file. These are HEAD and other in the
screenshot.

There is no way to combine conflicted images and
other binary files. You need to pick one or the other by tapping the one you
want. The selected version is marked by a thick border.

When all chunks have been either accepted or rejected and no binary files are
awaiting your choice, tap Resolve to verify your choice and mark files as
resolved. Next commit will conclude the merge. If there are chunks or files
pending your decision, the Resolve button will scroll to indicate this.

You can also resolve conflicts by manually editing files. The Content tab for a
conflicted file has a Resolve button for marking the file as resolved, when you
have picked the content you want and removed conflict markers.

4.7 Signed Commits

Git supports signing commits to make it possible for others to verify that
commits have been made by you. When signing you need a GPG or SSH
private key that must be kept secret and when verifying commits the
corresponding public key is needed.

You attach a private key to your Identity which can be imported or generated
inside the app. If the key is generated inside Working Copy you can attach it to
your GitHub account with a single tap or you can export the public or private
parts of the key to do manual configuration.

https://flexibits.com/fantastical-iphone
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work#_signing_commits
https://gnupg.org/

SSH commit signing is a pro feature available to users that purchased or
upgraded their pro unlock on January 19, 2022 or later. PGP signing is a free
feature.

Your private key needs a passphrase. You can configure Working Copy to Ask
every time the passphrase is needed, to store the passphrase in the keychain
requiring you to authenticate with Touch ID before it is read or to just Remember
the passphrase in the keychain.

Signing commits makes it possible to verify that the commit is made by
someone with access to the private key. This information is only useful when
other people can trust the private key is yours and they need a PGP or SSH
public key for this. GitHub makes this easy by letting you associate a public
key with your user account, but commit verification is possible in other
environments by importing public keys into the GPG keyring.

4.8 Tagging

Git has the ability to create a tag in a repository to reference a specific point in
history. This is typically used to mark a release or other milestone on a project.

View the list of tags from the Repository status screen creating new tags by
tapping + in the upper right corner. Create non-HEAD tags by navigating to a
specific commit and tapping Tag along the top.

To create a lightweight tag you enter a name and leave the message empty.
Enter a message for a full annotated tag that includes author information, date

https://workingcopy.app/manual/purchase
https://docs.github.com/en/authentication/managing-commit-signature-verification/adding-a-gpg-key-to-your-github-account
https://github.com/settings/keys
https://www.gnupg.org/gph/en/manual/x56.html#AEN83
https://git-scm.com/book/en/v2/Git-Basics-Tagging

and the message entered. Creating annotated tags is generally considered
best practice.

Created tags are transmitted to the remote on next Push.

4.9 Stashing changes

Sometimes your repository has modified files
that aren't ready for commit but prevent you
from doing other work. Stashing makes your
repository clean until you bring the changes back
by unstashing.

You Stash and Unstash from the context menu of
repositories.

Stashing is a pro feature available to users that
purchased the unlock or upgraded their pro
unlock on December 9, 2019 or later.

5. Extending iOS

All repositories in Working Copy can be accessed
by other applications using the document picker or
file browser components. The other application is
allowed to read and make changes to this file and
these changes stay inside Working Copy. You can
perform editing in this application and switch to
Working Copy to review and commit changes.

Initially you need to enable Working Copy as a
Location in the Files app and on iPad you can use
Split View to avoid switching between Working
Copy and the editing application.

Textastic is a very good general
purpose/programmers editor that works well with
Working Copy. Use Open… to open files and Add
External Folder… to open entire directories in-place.
You can read more about this in the Textastic
documentation.

iA Writer is a markdown editor with great design
and typography that can edit Working Copy files
and directories in-place. Files are added at the From

https://support.apple.com/en-us/102238
https://help.apple.com/ipad/9/#/iPad63ea0cbb
https://itunes.apple.com/dk/app/textastic-code-editor-6/id1049254261?mt=8&at=1000lHq
https://www.textasticapp.com/v10/manual/integration_other_apps/git_client_working_copy.html
https://ia.net/writer

Other Apps screen. Add entire directories by tapping Edit and then Add
Location… from the Library screen.

Ulysses is a focused and feature rich writing app where the library of files can
be kept inside Working Copy for easy version control of your writing.

1Writer is another good Markdown editor and you open files in Working Copy
by tapping in the lower right corner. If you need to work with images
Pixelmator is a good choice.

5.1 Drag and Drop

Drag and Drop makes it much easier to get files into or out of your
repositories.

Drag files from your emails, the Files app or any other supporting app to add
to your repositories. When files already exist you can import as a new file or
overwrite the existing one and when the existing file in your repository is
already committed overwriting is automatic, saving you a little time, as it is very
easy to Revert to get back old files.

Directories can be dragged into repositories or to the repository list to import a
new repository and zip archives can be decompressed as they are dragged.

When dragging files out of Working Copy the result will depend on the target
app. Dragging files into emails will attach them and dragging into the Files app
will export to this location. Editing apps such as Textastic that support this can

https://ia.net/writer/support/ios/the-library
https://ulysses.app/
https://workingcopy.app/ulysses.html
https://itunes.apple.com/us/app/1writer/id680469088?ls=1&mt=8&at=1000lHq
https://itunes.apple.com/us/app/pixelmator/id924695435?mt=8&at=1000lHq
https://itunes.apple.com/dk/app/textastic-code-editor-6/id1049254261?mt=8&at=1000lHq

receive a reference to files or directories letting them edit in-place such that
changes are made inside the repository.

5.2 Saving to Working Copy

Saving files into Working Copy can be
accomplished by way of a Share sheet, the
mechanism also used to share files with Mail or
Messages. Picking Working Copy on a Share
sheet will present a list of repositories, where you
drill down to the directory where the file should
be saved. To overwrite existing files you tap a file
before confirming. Otherwise you will be
prompted to enter a new file name.

After saving a file you can optionally Commit this
change immediately and Push to the remote right
away.

When saving zip-archives into Working Copy you
can either import the archive as a new repository,
extract to a existing repository overwriting
existing files as needed, or you can save the zip-
file as is.

5.3 Edit in App

In some situations you browse files in Working
Copy and need to pick out a file you want to edit in another application. The
action-button in the upper-right corner used to present a share-sheet also lets
you send files to other applications.

Open In … or Copy to … is the most basic choice and lets you pick any app
supporting that type of file. Editing will often be on a copy of the file and it
must be transferred back to Working Copy with Save in Working Copy, but if the
app you pick says Open in as opposed to Copy to the application is able to edit
the file in-place with no need to write back changes.

You will only see actions for apps you have already installed and you can
change the order by picking More to the far right.

5.4 External repositories

Some apps do not support opening files or directories in-place. If they use
iCloud Drive or On My Device to store documents, you can link from the other
app into Working Copy to manage documents using Git.

When adding repositories you tap Link external directory and pick a folder in the
Files app. This will appear as any other repository inside Working Copy and as
you edit, commit, push and pull the changes are made to the original linked
directory.

Alternatively you can drag directories from the Files app into the repository list
in Working Copy to create links. This is the only way to link to document
packages likes Swift Playgrounds and Codea projects that are not treated as
folders by iOS.

Working Copy needs folder-level access which can only work with Files app
locations that support picking folders such as iCloud Drive, On My Device or
Secure ShellFish. Unfortunately the major cloud storage solutions only support
granting file-level access.

A .git folder is created if the directory you pick isn't a repository and kept inside
Working Copy to not confuse other apps. You can change the location of the
.git directory from the repository configuration screen.

You can convert regular repositories inside Working Copy into external repos.
Enter the Status and Configuration screen and pick Link Repository to Folder or
Link Repository to Document from the title menu where the latter works for
directory-like documents such as Swift Playgrounds and Codea projects.

Linked external repositories is a pro feature available to users that purchased
or upgraded their pro unlock after September 2020.

This can be used with apps such as Codea, iA Writer, Obsidian, Scriptable,
Swift Playgrounds and other apps that store documents in iCloud Drive or On
my Device but depending on the app in question they can be confused if the
document files are changed while they are running.

Megan Sullivan wrote an excellent blog post on how to sync Obsidian Vaults
with Working Copy and the Shortcuts app.

5.5 Files synchronisation

https://secureshellfish.app/
https://codea.io/
https://ia.net/writer
https://obsidian.md/
https://scriptable.app/
https://www.apple.com/swift/playgrounds/
https://meganesulli.com/blog/sync-obsidian-vault-iphone-ipad/

This is a legacy feature and has been replaced by external repositories that
solves similar use-cases with more efficiency and flexibility. It is only available
to users that originally downloaded Working Copy in May 2022 or earlier.

Configure Working Copy to open directories used by these other apps in-
place. As you work in the other apps, your changes are synced back to
Working Copy to be committed. When you pull down commits from a remote
any changed files are written back to the directory in iCloud Drive or "On my
Device" for the other apps to use.

You configure a brand new repository for syncing by tapping + from the
repository list, Setup synced directory and pick a directory. All files from this
directory will be imported into a new repository ready to be committed. You
can add a remote from the Repository status screen.

For existing repositories use the Setup Folder Sync action from the title menu of
the repository or sub-directory status screen. Initial synchronisation will
combine all files from both sides but later on the modification dates are used
to determine what needs to be copied and what needs to be deleted. It is only
possible to have a single directory synced with each repository in Working
Copy.

When picking a directory for sync, iOS doesn't allow picking document
packages, which are documents that are directories rather than files. Use Setup
Package Sync to bypass this limitation.

Sync status is shown with a icon above directory listings that you tap for a list
of recent sync operations. You can restore files overwritten or deleted by
tapping Restore from this list. Backup files are kept for at least seven days.

You can deactivate syncing from the list of sync operations.

In some situations both sides of a file have been modified since the last sync
and Working Copy will pick the side most recently changed. To draw your
attention to this possible data-loss these sync entries have a warning icon and
the sync icon shows a orange counter with the number of warnings since you
last viewed the history. A red counter indicates the number of errors since you
last displayed the sync history.

5.6 WebDAV access

In situations where you need to transfer entire directory hierarchies, a good
way to get files into and out of Working Copy is the built-in WebDAV server.

WebDav cababilities are built into the macOS Finder and most versions of
Windows also let you access WebDAV by mapping to a network drive. You will
also be able to use third party WebDAV clients for macOS, Windows, Linux,
Android & iOS.

As a security precaution you need to start the server before each use and it
automatically shuts down after 15 minutes of inactivity. You should be cautious
of using the WebDAV server on untrusted networks as the transfers are
unencrypted. In these cases you should restrict yourself to connections from
applications on the same device, as the traffic cannot be intercepted when it

https://en.wikipedia.org/wiki/WebDAV
https://support.apple.com/en-gb/guide/mac-help/mchlp1546/mac
https://panic.com/transmit/
https://cyberduck.io/
https://play.google.com/store/apps/details?id=com.zq.webdav.app_free&hl=en&gl=US
https://panic.com/transmit-ios/

never leaves your device. Local connections are
also possible in situations without an Internet
connection. You need to specify localhost as the
hostname in these situations.

Applications on iOS are restricted as to how long
they are allowed to run in the background. If you
start the WebDAV server and switch to some other
application, you will be given a grace period before
Working Copy and its WebDAV server is terminated.
A notification will inform you of this and you can
Restart right from the notification to extend this
grace period.

Enable Server Persistence to keep track of your
location while WebDAV is enabled and keep
Working Copy running in the background.

5.7 Shortcuts and automation

Working Copy supports automation through the Shortcuts app where files and
other data can flow between actions. You locate these actions inside Apps >
Working Copy.

Use Get Repository Files to get one or several files
from a repository that can be passed to other
actions. The Path parameters can contain wildcards
such as docs/*.md and if it points to a directory all
files inside are returned. You can configure the action
to only include files with a particular status such as
modified and combining this with Path=/ can be useful
to get all files with this status.

Files returned from Get Repository Files can be
changed in-place by the shortcut but only some
actions work like that and often you need Write
Repository File to put content back into repositories.
This writes a single file at a time but you can use the
built-in Repeat with Each action to write several files.
Path controls the destination and can be a directory
to write inside this directory, but the action refuses to
overwrite existing files unless you enable this as one
of the options shown when you tap Show More.

Once you have changes use Commit Repository to
commit with some Message. No commit dialog is
shown and the action looks at what has been staged for commit either
through the Write Repository File that stages written files by default, through the

Stage for Commit action or from using the Commit dialog elsewhere and
cancelling that dialog. You can configure the commit to include all modified files
and not just the staged ones.

Pull Repository fetches and merges any new commits from the remote and
Push Repository pushes back commits. It can often be useful to include these
actions as the first and last in a shortcut to make sure work doesn't just stay
on your device. Both actions can be configured to use a specific Remote if you
have several.

Switch between branches with Checkout Branch as long as there are no
modified files and implement custom Git flows with Create Branch, Merge
Branch & Delete Branch.

List the most recent commits using Repository History from any branch, current
branch or a specific branch of your choice. Each commit contains the
message, author, date, sha1 identifier and link to GitHub.com and other
hosting provider websites when Working Copy can determine this.

All previous actions work from the Shortcuts app without having to launch
Working Copy, but it can be useful to be able to launch the app to show
specific information. The Open in Working Copy action can be used to show
files, directories or the repository itself and to clone repositories as needed.

Working Copy uses filesystem encryption to make sure repositories are only
available when the device is unlocked. This is reassuring if your device should
ever be lost or stolen but inconvenient when using Shortcuts automation.
Consider configuring automations in response to app lanches as the device
will be unlocked and your repositories available.

5.8 DraftCode

DraftCode is comprehensive editor and runtime for PHP, that lets you run
entire websites on your iPad or iPhone. Everything happens on your device
and works when offline.

You can transfer a directory to DraftCode by picking Copy from the share sheet
of a repository or directory and then using the Files app navigate to Locations >
On My Device > DraftCode > filestore where you tap-and-hold and pick Paste.

6. Beyond iOS

Not every tool is available on iOS, and Working Copy lets you use remote
computers to work on the files in your repositories. Git remotes can be
configured to perform operations at Push or you can use secure-shell to
upload files to remote server and invoke commands.

6.1 Log files

Working Copy will record log files as you clone, fetch from and push to
repositories. This can be helpful when troubleshooting connection problems
and if you are pushing to special remotes like Heroku the log can contain
information such as whether deployment was successful.

https://github.com/golang/go/commit/bdf0fe54480034cd21e36cfed6e44f10f4cb5c92
https://support.apple.com/en-gb/guide/security/secf6276da8a/web
http://solesignal.com/draftcode/
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://devcenter.heroku.com/articles/git

When something interesting is logged during a remote transfer, a log thumbnail
will appear in the lower right corner. You can drag this out of the screen to fully
hide it or tap to open up the log.

Access the list of previous logs using a button at the top of the repository list.
To keep this list tidy, only recent log files will be kept, but you can mark a log
file as favourite by tapping the star to avoid automatic cleanup.

Log files can be linked to a repository inside Working Copy, such that
filenames are turned into references. Regular URL's and email addresses are
detected as well and tapping these will show a preview and let you act on
them and while preview is shown, you will be able to Handoff the link to nearby
Macs or iOS devices for browsing.

Often the log files exist outside Working Copy in emails, on build-server status
pages or as raw text in actual log files. To import logs into the app, use the
Process in Working Copy action extension from the share sheet. It knows how
to deal with build status pages from App Center, BitRise, Circle CI and Jenkins
but it can be used on raw text as well. Zip archives will be unzipped and
imported as a single log-file with special markers to indicate filenames.

The best way to capture logs from App Center builds is to tap Download Logs
and use Process in Working Copy on the zip archive.

Your log files are entirely private and unless you explicitly export them they stay
on your device.

6.2 SSH Upload

It can be convenient to upload the files in your repository to a test server, and
to keep server files in sync as you make changes on iOS. To do this you

https://support.apple.com/en-us/HT204681
https://appcenter.ms/
https://www.bitrise.io/
https://circleci.com/
https://jenkins.io/

enable the SSH Upload feature from the share sheet for a repository or
directory.

As implied by the name, files are transferred using secure shell, where you
either authenticate using password or SSH keys. You pick a server, a Remote
directory and a Local directory where the entire repository is used if you do not
specify a Local directory. You access a list of previously used servers with a
button to the right of the Server field which also contains computers
advertising SSH services.

Tap Upload to start, where the app will compare files and directories in the
Remote directory to those in the Local directory uploading any files missing on
the remote server or where the local file is different than the remote file.

Once initial upload has completed, the local directory is watched for changes
and these are transferred automatically until Upload is stopped. This is
especially useful when working on Jekyll sites, Node.js services and other
technologies that can reload when files change.

You can switch to other apps for editing files, but Working Copy is only
allowed to keep running in the background for a limited time. A notification will
inform you when Upload is stopped for this reason.

Once SSH Upload is configured for a repository, a new button is available in the
upper right corner of the directory listing. This makes it easy to access
configuration and the icon will show status, turning green when Upload is
enabled and indicating when files are actively being transferred and if there are
errors. If you clear all fields in the configuration, you can tap Hide to disable
SSH Upload entirely until you enable it again with the share sheet.

6.3 SSH Command

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/NetServices/Introduction.html

Sometimes you need to apply a tool on your server to the files in your
repository on iOS. You can run make on a Makefile, have pdflatex create a PDF
file from LATEX, use xcodebuild to build apps or almost anything else you can
invoke on the command line.

SSH Command lets you configure commands for different file types that can be
invoked on your server using secure shell. Output from the command is shown
as a log file, where mentions of files that exist in your repository are converted
into links. Files on the server created or modified by running the command are
downloaded back into your repository.

You do this from the context menu of files and directories or with ⌘ $ or ⌘ ⇧
S as keyboard shortcuts. Configuration is similar to SSH Upload but you also
configure a Command to run on the server. When you tap Start a initial upload
is performed, but while waiting for local changes the specified command is run
on the remote server. When this command has completed upload syncing
stops and any files created or modified will be downloaded into your Local
directory.

Machine generated files are often not version controlled, and the easiest way
to enforce this, is to add these to your .gitignore file. Sliding left on files in the
directory listing and picking Ignore is the fastest way to achieve this. Note that
files in .gitignore are still downloaded and uploaded. It is only for version-control
purposes they are ignored.

Since Working Copy has no way of knowing which files are relevant, everything
in your Local directory is synced to the Remote directory. If you run the same
command many times using the same remote directory, there will often only be
a few files that have changed and need to be uploaded. When configuring the
command it can be helpful to create a subdirectory just for running this
command, which can be done by tapping + in the remote directory picker.

https://www.gnu.org/software/make/
https://developer.apple.com/library/content/technotes/tn2339/_index.html
https://workingcopy.app/manual/logfiles
https://workingcopy.app/manual/ssh-upload

The app will remember previous commands and these are available from the
button to the right of the Command field combining commands for the exact
filename, the same file extension or the most recent commands for any file.
The top choice for a given file is available as a action when sliding left on files
in directory listings.

You need a Linux or BSD server accessible through secure shell to use this
feature, but it doesn't have to be a expensive server. A small virtual private
server (vps) will get you far and can be purchased for less than $5 per month.
You can use your Mac as a server by enabling Remote Login.

Even though you can run all sorts of commands, this feature is not a substitute
for a standalone SSH client. When your operation has multiple steps or you
are not 100% sure what option a command takes, a standalone interactive
SSH client should be used. A good compromise for complicated commands is
to use a interactive client to create shell scripts that you invoke with SSH
Command. Secure ShellFish is full SSH client by the developer of Working
Copy and the editor Textastic contains an interactive SSH client.

To exclude the files uploaded and downloaded put a .sshignore file in the
outermost directory of your repository. The format is similar to .gitignore in that
each line is a glob pattern of files to exclude, where * matches a number of
filename characters and ** matches a number of characters including /.
Matches are done against the entire path when / is part of the pattern and
otherwise only the filename should match. Details of the pattern format is the
same as for .editorconfig.

Lines starting with # are comments and you start lines with ^ to make reverse
rules overriding earlier but not later lines.
Ignore .bin files everywhere, but only .js files inside tmp & don't ignore Index.js
*.bin
/tmp/*.js
^Index.js

If the server claims your regular commands do not exist the $PATH variable is
probably not what you expect. Try running echo $PATH using SSH Command
as a troubleshooting step. Working Copy identifies itself as a interactive login
shell, but in reality it isn't interactive and if the server detects this your .bashrc
script might not run. Doing path configurations in .profile or .bash_profile can fix
this.

7. Help and Support

A lot of work has gone into making Working Copy as trouble-free to use as
possible, but despite that, problems will sometimes occur. Please send your
questions by email to anders@workingcopy.app and I will do my very best to
assist.

7.1 File Backup

Files stored in Git are often very safe, since repositories are stored in multiple
locations some on local computers and some on remote servers. Files that
have not yet been committed and pushed to a server are somewhat vulnerable
to data loss.

https://support.apple.com/en-gb/guide/mac-help/mchlp1066/mac
https://apps.apple.com/us/app/secure-shellfish/id1336634154?ls=1
https://itunes.apple.com/dk/app/textastic-code-editor-6/id1049254261?mt=8
https://editorconfig.org/#file-format-details
mailto:anders@workingcopy.app

These files takes part in regular iOS backup to either iCloud or a local
computer through iTunes. You access the files using iTunes File Sharing and
since this uses a external computer, you can recover your files in situations
where Working Copy itself has problems running. Your files will be in a
directory called changes.

When you restore a iPad or iPhone from backup you can reclone some or all
your old repositories by going to "Previous repositories" in settings. When
cloning completes any changed and not yet pushed files are moved into the
repository for you to either commit or discard. Previous repositories without a
remote cannot be cloned but are listed to let you export the backed up files.

7.2 How to purchase

Working Copy is a free download but you need to
pay to unlock pro features:

1. Push to remote
2. Override system color scheme
3. SSH Upload
4. SSH Command
5. Font customization
6. External Preview
7. Repository Folders
8. Pull Request creation
9. Rebase from remotes

10. Stash changes
11. Unlimited repositories
12. Editing Branch history
13. Linked external repositories
14. Lock app with Face ID or Touch ID
15. Sign commits with SSH keys
16. AI suggested commit messages

This unlock is a one-time purchase remembered by
Apple such that you can restore the unlock on other
devices using the same Apple ID.

The features you unlock are permanently available and any other pro features
added the next 12 months after purchase are also permanently available. After
one year new pro features introduced will be locked until you purchase a
upgrade. Even if you do not purchase a new unlock after 12 months, the app
will still be updated with improvements and bug-fixes.

Students have access to all features for free through the GitHub Education
Pack.

Sign up for the newsletter and get in touch on Mastodon or by email.

https://support.apple.com/en-us/HT201301
https://workingcopy.app/manual/push-feature
https://workingcopy.app/manual/ssh-upload
https://workingcopy.app/manual/ssh-command
https://workingcopy.app/manual/font-customisation
https://workingcopy.app/manual/pull-requests
https://workingcopy.app/manual/rebase-pull
https://workingcopy.app/manual/stashing
https://workingcopy.app/manual/branch-editing
https://workingcopy.app/manual/external-repos
https://workingcopy.app/manual/signed-commits
https://workingcopy.app/manual/message-suggestions
https://workingcopy.app/education/
https://workingcopy.app/education/
https://workingcopy.app/newsletter/
https://indieapps.space/@WorkingCopy
https://workingcopy.app/enable-js.html

